分母有通项是:2+4+6+...+2n=n(n+1)
所以通项是:1/n(n+1)=1/n-1/(n+1)
所以:1/2+1/(2+4)+1/(2+4+6)+1/(2+4+6+8)+...+!/(2+4+6+...+2n)
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+.+1/(n-1)-1/n+1/n-1/(n+1)
=1-1/(n+1)
所以当n趋向无穷大时,该式极限是1
分母有通项是:2+4+6+...+2n=n(n+1)
所以通项是:1/n(n+1)=1/n-1/(n+1)
所以:1/2+1/(2+4)+1/(2+4+6)+1/(2+4+6+8)+...+!/(2+4+6+...+2n)
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+.+1/(n-1)-1/n+1/n-1/(n+1)
=1-1/(n+1)
所以当n趋向无穷大时,该式极限是1