(2)an+bn=n(n+1)+(n+1)^2=(n+1)(2n+1),所以,1/(an+bn)=1/[(n+1)(2n+1)
在数列{an},{bn}中,a1=2,b1=4,……证明:1/(a1+b1)+1/(a2+b2)+…1/(an+bn)<
2个回答
相关问题
-
数列an,bn 中a1=1,b1=5/2,且a(n+1)=3an-2bn,b(n+1)=5an-4bn,求an,bn
-
在数列{an},{bn}中,a1=2,b1=4且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n∈
-
问问在数列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列
-
数列an中,a1=0.5,an+1=an+an^2,bn=1/(1+an),sn=b1+b2=b3……+bn,pn=b1
-
设数列An,Bn 满足a1=b1=6,a2=b2=4,a3=b3=3,若{an+1 -an}是等差数列,{bn+1-bn
-
1.已知数列{an},{bn}满足a1=2,a2=4,bn=a(n+1)-an,b(n+1)=2bn+2.
-
数列{an}{bn}中,a 1=1,b1=2,且an+1+(−1)nan=bn,n∈N*,设数列{an}{bn
-
数列{An},{Bn}满足A1=2,B1=1,且An=3/4An-1+1/4Bn-1+1,Bn=1/4An-1+3/4B
-
证明:两个数列an,bn ,an等比数列,bn等差数列,a1=b1=1 ,a2>0 ,a10=b10 ,则b2≥a2.
-
已知数列An:a1,a2,…,an,如果数列Bn:b1,b2,…,bn满足b1=an,bk-1+bk=ak-1+ak(2