转化到极坐标系,则
x²+y²=r²,x=rcosθ,y=rsinθ
积分域D={(x,y)|x²+y²≤R²}={(r,θ)|0≤r≤R,0≤θ≤2π}
∫∫1/(x²+y²+R²)dxdy
=∫∫ r/(r²+R²)drdθ
=∫(0,2π)dθ ∫(0,R)r/(r²+R²)dr
=2π*[ln(r²+R²)/2]|(0,R)
=π[ln(2R²)-ln(R²)]
=πln2
转化到极坐标系,则
x²+y²=r²,x=rcosθ,y=rsinθ
积分域D={(x,y)|x²+y²≤R²}={(r,θ)|0≤r≤R,0≤θ≤2π}
∫∫1/(x²+y²+R²)dxdy
=∫∫ r/(r²+R²)drdθ
=∫(0,2π)dθ ∫(0,R)r/(r²+R²)dr
=2π*[ln(r²+R²)/2]|(0,R)
=π[ln(2R²)-ln(R²)]
=πln2