因为f(x)是一元二次函数
所以设 f(x) = ax² + bx + c ( a ≠ 0)
因为f(x + 1) = f( x ) + x + 1
a(x + 1)² + b(x + 1) + c = ax² + bx + c + x + 1
2ax + a + b = x + 1
所以 2a = 1 ,a + b = 1
所以 a = 1/2 ,b = 1/2
又因为f(0) = 0
所以 c = 0
所以 f(x) = x²/2 + x/2
因为f(x)是一元二次函数
所以设 f(x) = ax² + bx + c ( a ≠ 0)
因为f(x + 1) = f( x ) + x + 1
a(x + 1)² + b(x + 1) + c = ax² + bx + c + x + 1
2ax + a + b = x + 1
所以 2a = 1 ,a + b = 1
所以 a = 1/2 ,b = 1/2
又因为f(0) = 0
所以 c = 0
所以 f(x) = x²/2 + x/2