设数列公差为d,首项为a 1,
奇数项共n+1项,其和为S 奇=
(n+1)( a 1 + a 2n+1 )
2 =
(n+1)2 a n+1
2 =(n+1)a n+1=4,①
偶数项共n项,其和为S 偶=
n( a 2 + a 2n )
2 =
n2 a n+1
2 =na n+1=3,②
①
② 得,
n+1
n =
4
3 ,解得n=3
故选A
设数列公差为d,首项为a 1,
奇数项共n+1项,其和为S 奇=
(n+1)( a 1 + a 2n+1 )
2 =
(n+1)2 a n+1
2 =(n+1)a n+1=4,①
偶数项共n项,其和为S 偶=
n( a 2 + a 2n )
2 =
n2 a n+1
2 =na n+1=3,②
①
② 得,
n+1
n =
4
3 ,解得n=3
故选A