是(2n-1)a(n+1)²吧.步骤较多,最好在电脑上看回答结果.
(2n-1)a(n+1)²-(2n+1)an²=8n²-2=2(2n+1)(2n-1)
等式两边同除以(2n+1)(2n-1)
a(n+1)²/(2n+1)-an²/(2n-1)=2
a(n+1)²/[2(n+1)-1]-an²/(2n-1)=2
a1²/(2×1-1)=1/(2-1)=1
数列{an²/(2n-1)}是以1为首项,2为公差的等差数列.
an²/(2n-1)=1+2(n-1)=2n-1
an²=(2n-1)²
数列是正项数列,an>0
an=2n-1
数列{an}的通项公式为an=2n-1.