∵cosB=3√10/10,
∴sinB=√10/10,
又∵C=60°,
∴sin(B+C)=sinBcosC + cosBsinC
=√10/10 ·1/2 + 3√10/10·√3/2
=√10/20 ·(1+ 3√3)
∴cos(B+C)=cosBcosC - sinBsinC
=3√10/10 ·1/2 - √10/10·√3/2
=√10/20 ·(3-√3)
所以 sin2A
=sin2(180°-B-C)
=sin[360°-2(B+C)]
=-sin2(B+C)
=-2sin(B+C)cos(B+C)
=-2·√10/20 ·(1+ 3√3)·√10/20 ·(3-√3)
=(3-4√3)/10