∵A、B为锐角,
∴sinA=√[1-(cosA)^2]=√{1-[√(1/10)]^2}=√(9/10)
sinB=√[1-(cosB)^2]=√{1-[√(1/5)]^2}=√(4/5)
sin(A+B)=sinAcosB+cosAsinB=√(9/10)*√(1/5)+√(1/10)*√(4/5)=√2/2
0
∵A、B为锐角,
∴sinA=√[1-(cosA)^2]=√{1-[√(1/10)]^2}=√(9/10)
sinB=√[1-(cosB)^2]=√{1-[√(1/5)]^2}=√(4/5)
sin(A+B)=sinAcosB+cosAsinB=√(9/10)*√(1/5)+√(1/10)*√(4/5)=√2/2
0