面BCD中,过B做BE⊥CD于E
面ABE中,过A做AF⊥BE于F
则∠ABF即为AB与面BCD的角
设正四面体棱长为a
BC=a,CE=a/2
则BE=(a√3)/2
BF=2BE/3=(a√3)/3
即AB与面BCD的角的余弦
=BF/AB=[(a√3)/3]/a= (√3)/3
面BCD中,过B做BE⊥CD于E
面ABE中,过A做AF⊥BE于F
则∠ABF即为AB与面BCD的角
设正四面体棱长为a
BC=a,CE=a/2
则BE=(a√3)/2
BF=2BE/3=(a√3)/3
即AB与面BCD的角的余弦
=BF/AB=[(a√3)/3]/a= (√3)/3