(1)由2cos(A+B)=1,及内角和定理,得cosC=-1/2,
所以C=120°;
(2)由a、b是方程x²-2√3x+2=0的两个根,
得a+b=2√3,ab=2,
则-2abcosC=-2ab-2abcos120°=12-4+2=10,
∴|AB|²=a²+b²-2abcosC
=(a+b)²-2ab-2abcos120°
=12-4+2=10;
(3)S△ABC=1/2ab sinC=1/2 X 2 X√3/2=√3/2.
(1)由2cos(A+B)=1,及内角和定理,得cosC=-1/2,
所以C=120°;
(2)由a、b是方程x²-2√3x+2=0的两个根,
得a+b=2√3,ab=2,
则-2abcosC=-2ab-2abcos120°=12-4+2=10,
∴|AB|²=a²+b²-2abcosC
=(a+b)²-2ab-2abcos120°
=12-4+2=10;
(3)S△ABC=1/2ab sinC=1/2 X 2 X√3/2=√3/2.