解题思路:求出AD=BD,根据∠FBD+∠C=90°,∠CAD+∠C=90°,推出∠FBD=∠CAD,根据ASA证△FBD≌△CAD,推出CD=DF即可.
∵AD是△ABC的高,
∴AD⊥BC,
∴∠ADB=∠ADC=90°,
∵∠ABC=45°,
∴∠BAD=45°=∠ABD,
∴AD=BD,
∵BE⊥AC,
∴∠BEC=90°,
∴∠FBD+∠C=90°,∠CAD+∠C=90°,
∴∠FBD=∠CAD,
在△FBD和△CAD中
∠ADB=∠ADC
BD=AD
∠FBD=∠CAD,
∴△FBD≌△CAD(ASA),
∴CD=DF=4,
答:DF的长是4.
点评:
本题考点: 全等三角形的判定与性质;三角形内角和定理;等腰三角形的判定与性质.
考点点评: 本题考查了三角形的内角和定理,全等三角形的性质和判定,等腰三角形的性质和判定的应用,主要考查学生运用定理进行推理的能力,能推出△FBD≌△CAD是解此题的关键.