原式=1/(1-x)+1/(1+x)+2/(1+x²)+4/(1+x^4)-8/(1-x^8)
=(1+x+1-x)/[(1-x)(1+x)]+2/(1+x²)+4/(1+x^4)-8/(1-x^8)
=2/(1-x²)+2/(1+x²)+4/(1+x^4)-8/(1-x^8)
=[2(1+x²)+2(1-x²)]/[(1-x²)(1+x²)]+4/(1+x^4)-8/(1-x^8)
=4/(1-x^4)+4/(1+x^4)-8/(1-x^8)
=[4(1+x^4)+4(1-x^4)]/[(1+x^4)(1-x^4)]-8/(1-x^8)
=8/(1-x^8)-8/(1-x^8)
=0