a3=lg4
由an^2lg(n+2)+ana(n+1)lg(n+2)/(n+1)-a(n+1)^2lg(n+1)=0,移项后得(an+an+1)anlg(n+2)=(an+an+1)an+1lg(n+1),化简后得,a(n+1)/an=lg(n+2)/lg(n+1),
所以通项是an=1(n=1)或lg(n+1)(n>1)
代入n=3,可知a3=lg4
a3=lg4
由an^2lg(n+2)+ana(n+1)lg(n+2)/(n+1)-a(n+1)^2lg(n+1)=0,移项后得(an+an+1)anlg(n+2)=(an+an+1)an+1lg(n+1),化简后得,a(n+1)/an=lg(n+2)/lg(n+1),
所以通项是an=1(n=1)或lg(n+1)(n>1)
代入n=3,可知a3=lg4