证明:(1)连接OC.
∵DC是⊙O的切线,
∴OC⊥DC,
∴∠DCO=90°,
即:∠QCD+∠ACO=90°. (1分)
∵OC=OA,
∴∠ACO=∠A.
∴∠QCD+∠A=90°.
∵QP⊥AB,
∴∠Q+∠A=90°.
∴∠Q=∠QCD,
∴DQ=DC,即△CDQ是等腰三角形. (3分)
(2)成立.
连接OC.
∵DC是⊙O的切线,
∴OC⊥DC,
∴∠DCO=90°,即:∠QCD+∠ACO=90°. (1分)
∵OC=OA,
∴∠ACO=∠OAC.
∵∠OAC=∠QAP,
∴∠ACO=∠QAP.
∵QP⊥AB,
∴∠Q+∠QAP=90°.
∴∠Q+∠ACO=90°,
∴∠Q=∠QCD.
∴DQ=DC,即△CDQ是等腰三角形. (3分)