1.已知x^2+x-1=0,求x^3+2x^2+3 的值.

2个回答

  • 1.

    x^2+x-1=0 可得 x^2=1-x

    x^3+2x^2+3=x^3-1+2x^2+4=(x-1)(x^2+x-1+2)+2x^2+4

    =2(x-1)+2x^2+4=2x^2+2x-2+4

    =4

    2.(a-2b+3c)(a+2b-3c)=(a)^2-(2b-3c)^2=a^2-4b^2+12bc-9c^2

    3.(x+y)(x^2-xy+y^2)=x^3+y^3

    4.(x-y)(x^2+xy+y^2)=x^3-y^3

    5.x(x+1)(x+2)(x+3)=x^4+6x^3+11x^2+6x

    6.已知a≠b,且a(a+2)=b(b+2),求a+b的值.

    拆开,分解因式得2(a-b)=-(a-b)(a+b)

    a+b=-2