如图,在四面体P-ABC中,PA⊥平面ABC,AB=3,AC=4,BC=5,且D,E,F分别为BC,PC,AB的中点.

1个回答

  • 解题思路:(1)由勾股定理得AC⊥AB,由线面垂直得PA⊥AC.从而AC⊥平面PAB.由此能证明AC⊥PB.

    (2)取PA中点G时,FG∥平面ADE.由D、E分别是棱BC、PC的中点,得DE∥PB从而PB∥平面ADE,由FG∥PB,又FG⊄平面ADE,能证明FG∥平面ADE.

    (1)证明:在△ABC中,AB=3,AC=4,BC=5,∴AB2+AC2=BC2∴AC⊥AB,又PA⊥平面ABC,AC⊂平面ABC,∴PA⊥AC.又PA∩AB=A,∴AC⊥平面PAB.而PB⊂平面PAB,∴AC⊥PB.(2)取PA中点G时,FG∥平面ADE.证明如下:∵D、E...

    点评:

    本题考点: 直线与平面平行的判定;空间中直线与直线之间的位置关系.

    考点点评: 本题考查异面直线垂直的证明,考查使直线与平面平行的点的位置的确定,是中档题,解题时要认真审题,注意空间思维能力的培养.