由已知易得:a+b=-4,ab=2;a^2+b^2=(a+b)^2-2ab=12;
又a^3+14b+50
=a^3+7*2*b+50
=a^3+7ab^2+50 (代入ab=2)
=a(a^2+7b^2)+50
=a(12+6b^2)+50 (代入a^2+b^2=12)
=6ba^2+6ab^2+50 (代入ab=2)
=6ab(a+b)+50
=6*2*(-4)+50=2
由已知易得:a+b=-4,ab=2;a^2+b^2=(a+b)^2-2ab=12;
又a^3+14b+50
=a^3+7*2*b+50
=a^3+7ab^2+50 (代入ab=2)
=a(a^2+7b^2)+50
=a(12+6b^2)+50 (代入a^2+b^2=12)
=6ba^2+6ab^2+50 (代入ab=2)
=6ab(a+b)+50
=6*2*(-4)+50=2