6.利用等价无穷小
√(1+x) - 1 x/2,ln(1+x) sinx tanx x (x→0),
g.e.= lim(x→0)(1/2)[(x^2) + sinx]/tanx
= lim(x→0)(1/2)[(x^2) + x]/x
= 1/2.
1.利用等价无穷小
sinx ln(1+x) x,1-cosx (x^2)/2 (x→0),
g.e.= lim(x→0)[x*(2x)]/{[(2x)^2]/2} = … = 1.
6.利用等价无穷小
√(1+x) - 1 x/2,ln(1+x) sinx tanx x (x→0),
g.e.= lim(x→0)(1/2)[(x^2) + sinx]/tanx
= lim(x→0)(1/2)[(x^2) + x]/x
= 1/2.
1.利用等价无穷小
sinx ln(1+x) x,1-cosx (x^2)/2 (x→0),
g.e.= lim(x→0)[x*(2x)]/{[(2x)^2]/2} = … = 1.