3道初中几何题,1.如图1,E是正方形ABCD的边BC上任意一点,EF垂直AO于F,EG垂直BO于G.若四边形EFOG的

1个回答

  • 1.设EF长度为x,则 OG = x, OF = GE = √5 - x

    由于OC = AO = OF + AF = OF + FE = √5 - x + x = √5

    得正方形的对角线长度为2√5.由此可得,边长是√10.

    2.

    原理是证明AC^2 + BC^2 = AB^2

    设正方形b与CA交与E, a与CA交与F,则CA = CE + EF + FA

    同理设BC上的2个交点为G和H,则BC = CG + GH + HB

    在三角形AEK中,根据比例求AI (设为x),BJ(设为y)

    a : (x+a) = (b – a) : b

    x = a^2 / (b-a)

    AC^2 + BC^2 = [CE^2 +CG^2] +[EF^2] + [FA^2] + [GH^2] + [BH^2]

    = [b^2] +[(b-a)^2 + a^2] + [a^2 + x^2] + [(b-c)^2 + c^2] + [c^2 +y ^2]

    AB^2 = [x ^2] + a^2+b^2+c^2 + [y ^2]

    计算过程省略了.键盘上太难敲了,多多包涵.

    3.过D做BE//AC,交BC的延长线于E,则

    ED=AC=6,

    BD=8,

    BE=10

    三角形BDE是直角三角形,

    BE边上的高为4.8(即梯形ABCD的高)

    梯形ABCD的面积 = (2+8)*4.8/2 = 24