有三位学生分别说出了某二次函数图象的一些特点:甲:对称轴直线x=4

1个回答

  • 显然,此二次函数与x轴的交点A, B(A在B左侧)关于x = 4对称.

    设A与对称轴的距离为b (b>0, 且是整数), 则A(4 -b, 0), B(4 + b, 0).

    于是二次函数可表达为y = a[x - (4-b)][x - (4 + b)]

    x = 0, 与y轴交点C的纵坐标 c = a(16-b²)

    AB = (4+b) - (4-b) = 2b

    三角形ABC的面积S = (1/2)AB*|C的纵坐标|

    = (1/2)*2b|a(16 -b²)|

    = b|a(16 -b²)| = 3

    因为b为正整数,现在分别讨论:

    (1) b = 1

    |a| = 1/5. a = ±1/5

    y = ±(x-3)(x-5)/5

    (2) b = 2

    |a| = 1/8. a = ±1/8

    y = ±(x-2)(x-6)/8

    (3) b = 3

    |a| = 1/7. a = ±1/7

    y = ±(x-1)(x-7)/7

    (4) b = 4

    此时A,C重合,无解

    (5) b = 5

    |a| = 1/15. a = ±1/15

    y = ±(x+1)(x-9)/15

    依此类推,有无穷多解