由余弦定理得
cosA=(b²+c²-a²)/2bc=(b²+c²-3)/2bc=1/3,
则b²+c²-3=2/3bc,
因此b²+c²=3+2/3bc,
由基本不等式b²+c²≥2bc得,
3+2/3bc≥2bc,
故4/3bc≤3,
bc≤9/4,
所以bc的最大值为9/4.
由余弦定理得
cosA=(b²+c²-a²)/2bc=(b²+c²-3)/2bc=1/3,
则b²+c²-3=2/3bc,
因此b²+c²=3+2/3bc,
由基本不等式b²+c²≥2bc得,
3+2/3bc≥2bc,
故4/3bc≤3,
bc≤9/4,
所以bc的最大值为9/4.