2010天津中考数学试题18.有一张矩形纸片ABCD,按下面步骤进行折叠……

1个回答

  • I. AD=BC=C'D, AE=CF=C'F, DE=BE=DF

    II.正5边形中,MN=NP=PQ=QD=DM=m, AD=BC=C'D=b, AB=CD=a

    ∠DMN=∠MNP=∠NPQ=∠PQD=∠QDM=108°

    ① 由折叠过程,DE=BE,∠ADE=∠CDF=∠QDM-∠ADC=108°-90°=18°

    在Rt△ADE中,有AE/AD=tan∠ADE,即AE=AD*tan∠ADE = b*tan18°

    a²-b²=(AE+EB)²-AD²

    =(AE+ED)²-AD²

    =AE²+2AE*ED+ED²-AD²

    =2AE²+2AE*ED

    =2AE(AE+ED)

    =2AE(AE+EB)

    =2*b tan18°*a

    =2ab tan18°

    ② 连DN,则∠NDG=∠MDG-∠MDN=∠QDM/2-(180°-∠DMN)/2=18°

    GN = NP/2 = m/2,DG = BG = BD/2 = √(a²+b²)/2

    在Rt△DNG中,有tan∠NDG = NG/DG = (NP/2) / (BD/2) = NP/BD

    即 m = NP = BD tan∠NDG = √(a²+b²) tan18°

    ③ 连BN.

    AE与A'E'关于MN对称,AE交A'E'于点B,因此B在对称轴MN上,即BMN共线

    在Rt△ABM中,∠ABM=90°-∠AMB=90°-(180°-108°)=18°

    tan∠ABM = AM/AB = (AD-DM)/AB

    b = AD

    = DM + AB tan∠ABM

    = m + a tan18°

    ④ 作 NH⊥MQ于H,则∠MNH = ∠MNP-∠PNH = 108°-90°=18°

    在Rt△MNH中,tan∠MNH = MH/NH

    A'H = NG = NP/2 = m/2

    有MH = MN sin∠MNH = m sin18°

    b = AD

    = DM + AM

    = DM + A'M

    = DM + A'H + MH

    = m + m/2 + m sin18°

    = (3/2)m + m sin18°

    < (3/2)m + m tan18°

    因此 ①②③成立,④不成立