sinA不等于零.所以cosB.cosC都不等于零.
由sinA=3cosBcosC,得sinA=-sin(B+C)=-(sinBcosC+sinCcosB)=3cosBcosC
两边同除以cosBcosC得-(tanB+tanC)=3..所以tanB+tanC=-3
tan(B+C)=(tanB+tanC)/(1-tanBtanC)=3
sinA不等于零.所以cosB.cosC都不等于零.
由sinA=3cosBcosC,得sinA=-sin(B+C)=-(sinBcosC+sinCcosB)=3cosBcosC
两边同除以cosBcosC得-(tanB+tanC)=3..所以tanB+tanC=-3
tan(B+C)=(tanB+tanC)/(1-tanBtanC)=3