等比定理 a1/b1=a2/b2=a3/b3=---=an/bn时,
得(a1+a2+a3+---+an)/(b1+b2+b3+---+bn)=a1/b1
所以由b/sinB=c/sinC 得b/sinB=c/sinC=(b+c)/(sinB+sinC)
等比定理 a1/b1=a2/b2=a3/b3=---=an/bn时,
得(a1+a2+a3+---+an)/(b1+b2+b3+---+bn)=a1/b1
所以由b/sinB=c/sinC 得b/sinB=c/sinC=(b+c)/(sinB+sinC)