3^x=4^y=6^z=k>0
=>x=log3(k)
y=log4(k)
z=log6(k)
=>3x=3log3(k)=log3[k^3], 4y=log4(k^4),6z=log6(k^6)
=>3x-4y
=log3[k^3]-log4(k^4)
=[3lgk/lg3-4lgk/lg4]
=lgk[(3lg4-4lg3)/lg3*lg4]
=lgk[lg(4^3/3^4)/lg3*lg4]>0
=>3x>4y
同理:4y>6z
3^x=4^y=6^z=k>0
=>x=log3(k)
y=log4(k)
z=log6(k)
=>3x=3log3(k)=log3[k^3], 4y=log4(k^4),6z=log6(k^6)
=>3x-4y
=log3[k^3]-log4(k^4)
=[3lgk/lg3-4lgk/lg4]
=lgk[(3lg4-4lg3)/lg3*lg4]
=lgk[lg(4^3/3^4)/lg3*lg4]>0
=>3x>4y
同理:4y>6z