PE=PF,理由是:过点P作PM⊥OA,PN⊥OB,垂足是M,N,则∠PME=∠PNF=90°,∵OP平分∠AOB,∴PM=PN,∵∠AOB=∠PME=∠PNF=90°,∴∠MPN=90°,∵∠EPF=90°,∴∠MPE=∠FPN,在△PEM和△PFN中 ...
如图,画∠AOB=90°,并画∠AOB的平分线OC,将三角尺的直角顶点落在OC的任意一点P上,使三角尺的两条直角边与∠A
1个回答
相关问题
-
∠AOB=90°,OM是∠AOB的平分线将三角尺的直角顶点P在射线OM上滑动两直角边分别与OA,OB交于点CD.
-
三角尺画角的平分线在∠AOB的两边分别取OC=OD,在分别以C,D为垂足用三角尺做O如题
-
如图,∠AOB=90°,OM平分∠AOB,将直角三角板的顶点P在射线OM上移动,两直角边分别与OA、OB相交于点C、D,
-
如图,∠AOB=90°,OM平分∠AOB,将直角三角板的顶点P在射线OM上移动,两直角边分别与OA,OB相交于点C,D.
-
将一副三角尺按照如图的位置摆放,使得三角尺ACB的直角顶点C在三角尺DEF的直角边EF上.
-
已知,∠AOB=90度,OM平分∠AOB,将一块直角三角板的直角顶点P在射线OM上移动,两直角边分别与边OA,OB交与点
-
已知∠AOB=90度,OM是∠AOB的平分线,将三角板的直角顶点P在射线OM上
-
已知:∠AOB=90°,OM是∠AOB的角平分线,将三角板的直角顶点P在射线OM上滑动,两直角边分别于OA、OB交于C、
-
已知∠AOB=90°,OM是∠AOB的平分线,将三角形的直角顶点P在射线OM上移动,一直脚边与边OB交与点D
-
已知角AOB=90度,在角AOB的平分线OM上有一点C,将一个三角板的直角顶点与C重合.