设比为q
a1=3,a2=3q a3=3q^2
所以 3+3q+3q^2=21
1+q+q^2=7
因为数列各项均为正数,所以q=2
a3+a4+a5=3q^2+3q^3+3q^4=3q^2*(1+q+q^2)=21q^2=84
2.a1*a2*a3……a30
=a1*a1*2*a1*2^2……*a1^29
=a1^30*2^(1+2+3+……+30)
=a1^30*2^435=2^30
所以a1^30=2^(-405) a1^10=2^(-135)
a3*a6*a9……*a30
=a1*2^2*a1*2^5*a1*2^8……*a1*2^29
=a1^10*2^(2+5+8+……+29)
=a1^10*2^155
=2^(-135)*2^155
=2^20