因为AE平分∠BAD
所以∠BAE = 1/2∠BAD = 45°
∠BEA = 90°- ∠BAE = 90°- 45°= 45°
∠DAC = ∠DAE - ∠EAO = 45°-15°= 30°
设边长AB = 1
得到 AE = √2
AO = 1
解三角形AOE
余弦定理有 EO^2 = AO^2 + AE^2 - 2AO*AE*cos∠EAO
= 1 + 2 -2√2cos15°
= 3-2√2cos15°
EO = √(3-2√2cos15°)
正弦定理 EO/sin∠EAO = AE/sin∠AOE
sin∠AOE = AE*sin∠EAO/EO
= √2sin15°/ √(3-2√2cos15°)
所以 ∠AOE = arc sin( √2sin15°/ √(3-2√2cos15°) )