在矩形ABCD中,AC、BD交于点O,AE平分∠BAD,若∠EAO=15°,求∠AOE的度数

1个回答

  • 因为AE平分∠BAD

    所以∠BAE = 1/2∠BAD = 45°

    ∠BEA = 90°- ∠BAE = 90°- 45°= 45°

    ∠DAC = ∠DAE - ∠EAO = 45°-15°= 30°

    设边长AB = 1

    得到 AE = √2

    AO = 1

    解三角形AOE

    余弦定理有 EO^2 = AO^2 + AE^2 - 2AO*AE*cos∠EAO

    = 1 + 2 -2√2cos15°

    = 3-2√2cos15°

    EO = √(3-2√2cos15°)

    正弦定理 EO/sin∠EAO = AE/sin∠AOE

    sin∠AOE = AE*sin∠EAO/EO

    = √2sin15°/ √(3-2√2cos15°)

    所以 ∠AOE = arc sin( √2sin15°/ √(3-2√2cos15°) )