当为“介值定理”,是闭区间上连续函数的性质之一.
参考 :
定理2 (介值定理)设函数y=f(x)在闭区间[a,b]上连续,且在这区间的端点取不同的函数值:
f(a)=A,f(b)=B,且A≠B
那么,不论C是A与B之间的怎样一个数,在开区间(a,b)内至少有一点ξ,使得
f(ξ)=C (a
当为“介值定理”,是闭区间上连续函数的性质之一.
参考 :
定理2 (介值定理)设函数y=f(x)在闭区间[a,b]上连续,且在这区间的端点取不同的函数值:
f(a)=A,f(b)=B,且A≠B
那么,不论C是A与B之间的怎样一个数,在开区间(a,b)内至少有一点ξ,使得
f(ξ)=C (a