∵AD∥BC,∠B=∠C=60°,∴∠D=120°,
∵AD=CD,∴∠ACD=1/2(180°-∠D)=30°.
过A作AF⊥BC于F,则AF=√3,
∵∠B=60°,∴AB=AF/sin60°=2,
∴CD=2,在RTΔCDE中,∠ACD=30°,∴DE=1/2CD=1,
∴CE=√(CD^2-DE^2)=√3,
∴DE=2CE=2√3.
∵AD∥BC,∠B=∠C=60°,∴∠D=120°,
∵AD=CD,∴∠ACD=1/2(180°-∠D)=30°.
过A作AF⊥BC于F,则AF=√3,
∵∠B=60°,∴AB=AF/sin60°=2,
∴CD=2,在RTΔCDE中,∠ACD=30°,∴DE=1/2CD=1,
∴CE=√(CD^2-DE^2)=√3,
∴DE=2CE=2√3.