在三角形ABC中,AC=2AB,角BAC等于60度,P为三角形内一点,AP=√3,BP=2,CP=5,求三角形ABC的面

2个回答

  • 1.首先证明△ABC是直角三角形.

    假设BC与AC不垂直,则过点B作BD⊥AC交直线AC与点D

    ∵∠A=60°(已知)

    ∴AB=2AD(直角三角形中30°角的对边等于斜边的一半)

    ∵AB=2AC(已知)

    ∴AC=AD(等量代换)

    这与直线外一点与直线上各点所连成的所有线段中,垂线段最短相矛盾,所以假设错误,即AC、AD两线重合.

    ∴BC⊥AC

    即△ABC为直角三角形.(直角三角形定义).

    2.作全等△AP1C关于直线AC与△APC全等.△BP2C关于直线BC与△BPC全等..△BP3A关于直线AB与△BPA全等..

    则,∠P2BP3=2∠B=60°,∠P1AP3=2∠A=120°.∠P2CP1=2∠C=180°,所以点P2,P1,C 在同一直线上.

    依次连接点A,P1,C,P2,B,P3,A.得到一个凸五边形.且五边形的面积是△ABC的二倍.连接P1,P2,P3,.易得P2P3=BP2=BP=5,P1P2=P1C+P2C=2PC=4,由△AP1P3为等腰△(因为AP3=AP1),且求得∠P1AP3=2∠A=120°.所以S△P1AP3=3√3/4,且P3P1=3,

    进一步求得(3,4,5 为勾股数)△P1P2P3为直角△.

    易求S△P2BP3=25√3/4,S△P1P2P3=6.

    所以S△P2BP3+S△P1P2P3+S△P1AP3=7√3+6

    所以△ABC=3+7√3/2.