设平抛初速度为V0,O点坐标为O(X0,Y0)
t 时刻横坐标为 X=V0·t+X0
t 时刻纵坐标为 Y=gt²/2 +Y0
则X与Y的函数关系式为:Y=g [(X-X0)/V0 ]²/2+Y0
令a=g/(2·V0²),将该式简化为Y=a(X-X0)²+Y0
代入三点坐标,得三元方程组:
YA=a(XA-X0)²+Y0……(I)
YB=a(XB-X0)²+Y0……(II)
YC=a(XC-X0)²+Y0……(III)
(II)-(I)得:
a(X0-XB)²-a(X0-XA)²=YB-YA
a(X0-XB+X0-XA)(X0-XB-X0+XA)=YB-YA
a(2X0-XB-XA)(XA-XB)=YB-YA
X0={(YB-YA)/ [a(XA-XB)]+XB+XA } / 2……(IV)
(III)-(I)得:
X0={(YC-YA)/ [a(XA-XC)]+XC+XA } / 2……(V)
(IV)=(V)得:
{(YB-YA)/ [a(XA-XB)]+XB+XA } / 2={(YC-YA)/ [a(XA-XC)]+XC+XA } / 2
1/a · [(YB-YA)/(XA-XB)-(YC-YA)/(XA-XC)] = XC - XB
代入三点坐标得:
1/a · [(0.327-0.112)/(0.369-0.63)-(0.48-0.112)/(0.369-0.761)] = 0.761 - 0.63
解得:
a = 1
则V0²=g/2a=9.8/2=4.9
V0=√4.9=2.21
即:小球的平抛的初速度为2.21 m/s.