解题思路:(1)试着把28、2012写成平方差的形式,解方程即可判断是否是神秘数;
(2)化简两个连续偶数为2k+2和2k的差,再判断;
(3)设两个连续奇数为2k+1和2k-1,则(2k+1)2-(2k-1)2=8k=4×2k,即可判断两个连续奇数的平方差不是神秘数.
(1)设28和2012都是“神秘数”,设28是x和x-2两数的平方差得到,
则x2-(x-2)2=28,
解得:x=8,∴x-2=6,
即28=82-62,
设2012是y和y-2两数的平方差得到,
则y2-(y-2)2=2012,
解得:y=504,
y-2=502,
即2012=5042-5022,
所以28,2012都是神秘数.
(2)(2k+2)2-(2k)2=(2k+2-2k)(2k+2+2k)=4(2k+1),
∴由2k+2和2k构造的神秘数是4的倍数,且是奇数倍.
(3)设两个连续奇数为2k+1和2k-1,
则(2k+1)2-(2k-1)2=8k=4×2k,
即:两个连续奇数的平方差是4的倍数,是偶数倍,不满足连续偶数的神秘数为4的奇数倍这一条件.
∴两个连续奇数的平方差不是神秘数.
点评:
本题考点: 平方差公式.
考点点评: 此题首先考查了阅读能力、探究推理能力.对知识点的考查,主要是平方差公式的灵活应用.