设A(r,θ)
角B=θ=2角A
由正弦定理得:
r/sin∠ACB=BC/sin∠A
即r=10sin(π-3θ/2)/sin(θ/2)=10sin(3θ/2)/sin(θ/2)
=10(3-4sin²(θ/2))=10(2cosθ+1)
r=10(2cosθ+1)此即A点的极坐标轨迹方程
设A(r,θ)
角B=θ=2角A
由正弦定理得:
r/sin∠ACB=BC/sin∠A
即r=10sin(π-3θ/2)/sin(θ/2)=10sin(3θ/2)/sin(θ/2)
=10(3-4sin²(θ/2))=10(2cosθ+1)
r=10(2cosθ+1)此即A点的极坐标轨迹方程