∵tan(a+b)=(tana+tanb)/(1-tanatanb)
∴tanb=[tan(a+b)-tana]/[tan(a+b)tana+1)
∵ tan(a+b)=1/3,tana=-2
∴tanb=[(1/3)-(-2)]/[(1/3)(-2)+1]=7/5
∵tan(a+b)=(tana+tanb)/(1-tanatanb)
∴tanb=[tan(a+b)-tana]/[tan(a+b)tana+1)
∵ tan(a+b)=1/3,tana=-2
∴tanb=[(1/3)-(-2)]/[(1/3)(-2)+1]=7/5