a(n+1)=f(an)=an^2+an
1/a(n+1)=1/(an^2+an)=1/[an(1+an)]=1/an - 1/(1+an)
1/(1+an)=1/an-1/a(n+1)
1/(1+a1)+1/(1+a2)+.+1/(1+an)
=(1/a1-1/a2)+(1/a2-1/a3)+...[1/an-1/a(n+1)]
=1/a1-1/a(n+1)
=2-1/a(n+1)
a(n+1)=an^2+an
a(n+1)-an=an^2>0 (a1>0)
a(n+1)>an>a(n-1)>...>a1=1/2
a2-a1=a1^2
a3-a2=a2^2
.
an-a(n-1)=a(n-1)^2(上述式子进行叠加)
an-a1=a1^2+a2^2+a3^2+...+a(n-1)^2
an=a1+a1^2+a2^2+a3^2+...+a(n-1)^2
>1/2+(1/2)^2+(1/2)^2+(1/2)^2+...+(1/2)^2 (共有n-1个(1/2)^2 )
=1/2+(n-1)/4
=(n+1)/4
a(n+1)>[(n+1)+1]/4=(n+2)/4
1/a(n+1)