求解一道关于极限的题目f(x)=x^2+x,a(n+1)=f(an),a1=0.5求lim[1/(1+a1)+1/(1+

1个回答

  • a(n+1)=f(an)=an^2+an

    1/a(n+1)=1/(an^2+an)=1/[an(1+an)]=1/an - 1/(1+an)

    1/(1+an)=1/an-1/a(n+1)

    1/(1+a1)+1/(1+a2)+.+1/(1+an)

    =(1/a1-1/a2)+(1/a2-1/a3)+...[1/an-1/a(n+1)]

    =1/a1-1/a(n+1)

    =2-1/a(n+1)

    a(n+1)=an^2+an

    a(n+1)-an=an^2>0 (a1>0)

    a(n+1)>an>a(n-1)>...>a1=1/2

    a2-a1=a1^2

    a3-a2=a2^2

    .

    an-a(n-1)=a(n-1)^2(上述式子进行叠加)

    an-a1=a1^2+a2^2+a3^2+...+a(n-1)^2

    an=a1+a1^2+a2^2+a3^2+...+a(n-1)^2

    >1/2+(1/2)^2+(1/2)^2+(1/2)^2+...+(1/2)^2 (共有n-1个(1/2)^2 )

    =1/2+(n-1)/4

    =(n+1)/4

    a(n+1)>[(n+1)+1]/4=(n+2)/4

    1/a(n+1)