(1)、f(x)=3sin^2(wx+θ)+根号3sin(wx+θ)cos(wx+θ)-3/2
=根号3/2sin(2wx+2θ)+3/2[2sin^2(wx+θ)-1]
=根号3/2sin(2wx+2θ)+3/2cos(2wx+2θ)
=根号3[1/2sin(2wx+2θ)+根号3/2cos(2wx+2θ)]
=根号3[sin(2wx+2θ)cosπ/3+cos(2wx+2θ)sinπ/3]
=根号3sin(2wx+2θ+π/3)
因为f(x)的T=π,所以T=2π/2w=π,即:w=1,
所以f(x)=根号3sin(2x+2θ+π/3)
又x=π/12是其对称轴
所以2*(π/12)+2θ+π/3=kπ+π/2,k属于整数,即:θ=kπ/2,k属于整数
所以θ=π/2,故f(x)=根号3sin(2x+π+π/3)=-根号3sin(2x+π/3).
(2)、因为0=