已知数列{an}前n项和为sn,且sn=2n^2+n数列{bn}满足an=4log2(bn)+3,n∈N*

1个回答

  • 1.

    n=1时,a1=S1=2×1²+1=3

    n≥2时,an=Sn-S(n-1)=2n²+n-[2(n-1)²+(n-1)]=4n-1

    n=1时,a1=4×1-1=3,同样满足通项公式

    数列{an}的通项公式为an=4n-1

    an=4log2(bn) +3

    log2(bn)=(an -3)/4=(4n-1-3)/4=n-1

    bn=2^(n-1)

    数列{bn}的通项公式为bn=2^(n-1)

    2.

    an·bn=(4n-1)·2^(n-1)=n·2^(n+1) -2^(n-1)

    Kn=a1·b1+a2·b2+...+an·bn

    =1·2²+2·2³+3·2⁴+...+n·2^(n+1) -[1+2+...+2^(n-1)]

    令Cn=1·2²+2·2³+3·2⁴+...+n·2^(n+1)

    则2Cn=1·2³+2·2⁴+...+(n-1)·2^(n+1)+n·2^(n+2)

    Cn-2Cn=-Cn=2²+2³+...+2^(n+1) -n·2^(n+2)

    =4·(2ⁿ-1)/(2-1) -n·2^(n+2)

    =(1-n)·2^(n+2) -4

    Cn=(n-1)·2^(n+2) +4

    Kn=Cn -[1+2+...+2^(n-1)]

    =(n-1)·2^(n+2) +4 -1·(2ⁿ-1)/(2-1)

    =(4n-5)·2ⁿ +5

    3.

    cn=1/[an·a(n+1)]=1/[(4n-1)(4(n+1)-1)]=(1/4)[1/(4n-1)-1/(4(n+1)-1)]

    Tn=c1+c2+...+cn

    =(1/4)[1/(4×1-1)-1/(4×2-1)+1/(4×2-1)-1/(4×3-1)+...+1/(4n-1)-1/(4(n+1)-1)]

    =(1/4)[1/3 -1/(4n+3)]

    =1/12 -1/[4(4n+3)]

    随n增大,4(4n+3)单调递增,1/[4(4n+3)]单调递减,1/12 -1/[4(4n+3)]单调递增

    n->+∞,Tn1/12

    要不等式Tn