已知三角形ABC中,D是BC边上一点,求证AB^2●DC+AC^2●BD-AD^2●bc=BC●dc●bd

3个回答

  • 证明:AB^2●DC+AC^2●BD-AD^2●BC

    =AB^2●DC+AC^2●BD-AD^2●(BD+DC)

    =(AB^2-AD^2)×DC+(AC^2-AD^2)×BD

    过A点作AE⊥BC于点E

    1、若点E与B(或C)重合(自己作图)

    则:(AB^2-AD^2)×DC+(AC^2-AD^2)×BD

    =(AC^2-AD^2)×BD-(AD^2-AB^2)×DC

    =[(AB^2+BC^2)-(AB^2+BD^2)]×BD-BD^2×DC

    =(BC^2-BD^2)×BD-BD^2×DC

    =(BC+BD)(BC-BD)×BD-BD^2×DC

    =(BC+BD)DC×BD-BD^2×DC

    =BD×DC×(BC+BD-BD)

    =BC×DC×BD

    2、若点E在BC的延长线上(自己作图)

    则:(AB^2-AD^2)×DC+(AC^2-AD^2)×BD

    =[(AE^2+BE^2)-(AE^2+DE^2)]×DC+[(AE^2+CE^2)-(AE^2+DE^2)]×BD

    =(BE^2-DE^2)×DC+(CE^2-DE^2)×BD

    =(CE+DE)(CE-DE)×BD-(DE+BE)(DE-BE)×DC

    =(CE+DE)DC×BD-(DE+BE)BD×DC

    =BD×DC×[CE+DE-(DE+BE)]

    =BC×DC×BD

    3、若点E在BC上(自己作图)

    则:(AB^2-AD^2)×DC+(AC^2-AD^2)×BD

    =[(AE^2+BE^2)-(AE^2+DE^2)]×DC+[(AE^2+CE^2)-(AE^2+DE^2)]×BD

    =(BE^2-DE^2)×DC+(CE^2-DE^2)×BD

    =(DE+BE)×BD×DC+(CE-DE)×DC×BD

    =BD×DC×(DE+BE+CE-DE)

    =BC×DC×BD

    综上所述AB^2●DC+AC^2●BD-AD^2●BC=BC●DC●BD