假设存在m,使3n+2=m^2 ,即 m^2 - 2 = 3n,也就是存在整数m,m^2 - 2 能被3 整除.
对于m分三种情况 3k,3k+1,3k+2 讨论,发现m^2 - 2 总不能被3 整除.
故不存在m,使3n+2=m^2.
实际是用反证法来证的.
假设存在m,使3n+2=m^2 ,即 m^2 - 2 = 3n,也就是存在整数m,m^2 - 2 能被3 整除.
对于m分三种情况 3k,3k+1,3k+2 讨论,发现m^2 - 2 总不能被3 整除.
故不存在m,使3n+2=m^2.
实际是用反证法来证的.