算得当n分别取1,2,3,4时的值为1,3/2,3/2,5/4.
下证当n≥3时原式{a(n)}单调递减.
a(n+1)-a(n)=(n²+3n+2)/2^(n+1)-(n²+n)/2^n
=(-n²+n+2)/2^(n+1)
= -(n+1)(n-2)/2^(n+1)<0,
故最大值为3/2.
算得当n分别取1,2,3,4时的值为1,3/2,3/2,5/4.
下证当n≥3时原式{a(n)}单调递减.
a(n+1)-a(n)=(n²+3n+2)/2^(n+1)-(n²+n)/2^n
=(-n²+n+2)/2^(n+1)
= -(n+1)(n-2)/2^(n+1)<0,
故最大值为3/2.