解题思路:(1)按提示把A+B和A-C整体代入,可得B+C的表达式,然后再代值计算即可.
(2)按提示把后个代数式转化为第一个代数式的变形式,然后把第一个代数式的结果代入,可简化运算.
(3)把代数式先进行合并同类项,然后按提示把xy和x+y当做一个整体;由已知得xy=2(x+y),代入求值即可.
(1)∵B+C=(A+B)-(A-C),
∴B+C=3x2-5x+1-(-2x+3x2-5)=-3x+6;
当x=2时,上式=-6+6=0;
(2)∵6x2+9 y+8=3(2x2+3y)+8,
已知2x2+3y+7=8,得2x2+3y=1
∴上式=3×1+8=11;
(3)原代数式=
3(x+y)−5xy
3xy−(x+y),由已知得xy=2(x+y),
所以原式=
−7(x+y)
5(x+y)=-[7/5].
点评:
本题考点: 代数式求值.
考点点评: 本题主要考查了用整体思想解题,为了简化问题,我们往往把一个式子看成一个数的整体,可以达到简化运算的目的.