令a=2010
则原式=(a²+4a+4)÷(a³+2a²-4a-8)
=(a+2)²÷[a²(a+2)-4(a+2)]
=(a+2)²÷[(a+2)(a²-4)]
=(a+2)²÷[(a+2)(a+2)(a-2)]
=(a+2)²÷[(a+2)²(a-2)]
=1÷(a-2)
=1/2008
令a=2010
则原式=(a²+4a+4)÷(a³+2a²-4a-8)
=(a+2)²÷[a²(a+2)-4(a+2)]
=(a+2)²÷[(a+2)(a²-4)]
=(a+2)²÷[(a+2)(a+2)(a-2)]
=(a+2)²÷[(a+2)²(a-2)]
=1÷(a-2)
=1/2008