B
F(X)与G(x)S 是R定义上的两个可导函数,若F(X)的导数与G(X)的导数相等,则F(X)与G(X)满足的关系是
3个回答
相关问题
-
已知f(x)与g(x)是定义在R上的两个可导函数,若f(x)与g(x)满足f′(x)=g′(x),则( )
-
已知f(x)与g(x)是定义在R上的两个可导函数,若f(x)与g(x)满足f′(x)=g′(x),则( )
-
函数fx与gx都是R上的可导函数,若f′(x)>g′(x),则f(x)与g(x)必有(?) A.f(x)>g(x)B.f
-
f(x)导数<g(x)导数,则f(x)<g(x)?(可导的情况下)
-
证明如果两个可导函数f(x)与g(x),满足f(0)=0,g(x)=0且它们导数存在,g(x)不为0那么f(x)/g
-
设f(x)、g(x)是R上的可导函数,f′(x),g′(x)分别为f(x)、g(x)的导函数,且满足f′(x)g(x)+
-
已知函数f(x),g(x)是定义在R上可导函数,满足f′(x)•g(x)-f(x)•g′(x)<0,且f(x)>0,g(
-
已知函数f(x),g(x)是定义在R上可导函数,满足f′(x)•g(x)-f(x)•g′(x)<0,且f(x)>0,g(
-
函数求导数已知f(x)与g(x)均为可导函数,如果f(x)=g(t+x),则f'(x)=请写过程!
-
设f(x)、g(x)是R上的可导函数,f'(x)、g'(x)分别为f(x),g(x)的导函数,且f'(x)g(x)+f(