设过P(2,1)的直线l 的方程为 x/a+y/b=1
a,b是直线l 在两坐标轴上的截距,a>0,b>0
点P在直线上.则
2/a+1/b=1,即 a+2b=ab
三角形OAB的周长L=a+b+√(a²+b²)>=a+b+√2ab>=2√ab+√2*√ab=(2+√2)√ab
当且仅当a=b 时,L有最小值
那么a+2a=a²
a²-3a=0
a不等于0,
a=3
那么所求的直线方程是
x/3+y/3=1
即 x+y-3=0
(此时L的最小值是 (2+√2)√ab=3(2+√2)
也就是 OA+OB+AB=3+3+3√2=3(2+√2)