tan2a=2tana/(1-tan^2a)=2*1/2 / (1-1/4)=4/3
tana=1/2<1
a∈(0,π/4)
2a∈(0,π/2)
sin2a=4/5
cos2a=3/5
sin(2a+π/3)=sin2a*cosπ/3+sinπ/3*cos2a=4/5 *1/2+√3/2 * 3/5=(3√3+4)/10
tan2a=2tana/(1-tan^2a)=2*1/2 / (1-1/4)=4/3
tana=1/2<1
a∈(0,π/4)
2a∈(0,π/2)
sin2a=4/5
cos2a=3/5
sin(2a+π/3)=sin2a*cosπ/3+sinπ/3*cos2a=4/5 *1/2+√3/2 * 3/5=(3√3+4)/10