三角形ABC中,AD=BC,AD垂直BC,BE垂直AC,G为BC中点.求证:三角形BDF相似于三角形ADC.DF+GF=

2个回答

  • 综合应用相似和勾股定理

    证明:

    △BDF∽△ADC

    DF/BD=DC/AD

    DF=BD*DC/AD

    BD=BG+GD ,DC=GC- GD=BG - GD ,AD=BC ,

    勾股定理

    FG^2

    =FD^2+DG^2

    =(BD*DC/AD)^2+DG^2

    BD=BG+GD ,DC=GC- GD=BG - GD ,AD=BC ,

    =[(BG +GD)(BG - GD) / BC]^2+DG^2

    =(BG^2- GD^2)^2 / BC^2+BC^2*DG^2 / BC^2

    =[(BG^2- GD^2)^2 +BC^2*DG^2] / BC^2

    =[(BG^2- GD^2)^2 +(2BG)^2*DG^2] / BC^2

    =[(BG^2- GD^2)^2 +4 BG^2*DG^2] / BC^2

    =(BG^2+GD^2)^2 / BC^2

    FG=(BG^2+GD^2 ) / BC

    FG+DF

    =(BG^2+GD^2 ) / BC+BD*DC/AD

    =(BG^2+GD^2 ) / BC+[(BG +GD)(BG - GD)/BC

    =(BG^2+GD^2 ) / BC+(BG^2 - GD^2)/BC

    =2BG^2 / BC

    =2BG^2 /2BG

    =BG

    =1/2 BC