1.对任意的正数函数f(x)满足f(xy)=f(x)+f(y),且f(8)=3,则f(2)=?
1个回答
F(8)=F(2*4)=F(2)+F(4)
=F(2)+F(2)+F(2)
=3F(2)=3
所以 f(2)=1
相关问题
已知函数fx对任意xy∈R满足f(x+y)=f(x)+f(y),且f2=4,则f1=
已知函数fx对任意xy∈R满足f(x+y)=f(x)+f(y),且f2=4,则f-1=
函数f(x)满足,当x1≠x2时,f(x1)≠f(x2),且对任意正数x,y都有f(xy)=f(x)+f(y),若数列a
对任意整数x,y函数y=f(x)满足:f(x-y)=f(x)-f(y)-xy-1,若f(1)=1,则f(-8)=多少
定义在R+上的函数f(x)满足:f(3)=-1;对任意正数x.y有f(xy)=f(x)+f(y);x>1时,f(x)
函数f(x)对任意的实数x,y都满足f(xy)=f(x)+f(y),且f(1/3)=1,求f(9)
已知函数f(x)满足f(2)=1,且f(xy)=f(x)+f(y),则f(8)= .
定义域为R+函数对任意实数x,y满足f(xy)=f(x)+f(y),且f(2)=1,f(6)=1/5,求f(3)
函数f(x)对任意x满足f(x+3)=1/f(x),且f(1)=1/2,则f(2014)=
设函数f:R - R满足f(0)=1,且对任意x,y属于R,均有f(xy+1)=f(x)f(y)-f(y)-x+2则有f