证明 由柯西不等式得:
4√[(y^2+yz+z^2)(z^2+zx+x^2)]
=√{[3(y+z)^2+(y-z)^2]*[3(x+z)^2+(x-z)^2]}
>={√[3(y+z)*(z+x)+(y-z)*(x-z)^2]}^2
=4z^2+4xy+2yz+2zx
同理可得:
4√[(z^2+zx+x^2)(x^2+xy+y^2)]>=4x^2+4yz+2xy+2zx
4√[(x^2+xy+y^2)(y^2+yz+z^2)]>=4y^2+4zx+2yz+2xy
上述三式叠加即得所证不等式.