过点(2,3)作动直线l交椭圆x²/4+y²=1于不同的点P,Q,过P,Q作椭圆的切线,两条切线的交

1个回答

  • (1)设切点P(x1,y1),Q(x2,y2),则

    切线PM:x1x/4+y1y=1,

    QM:x2x/4+y2y=1,

    它们都过点M(m,n),

    ∴x1m/4+y1n=1,

    x2m/4+y2n=1,

    ∴直线l:mx/4+ny=1过P,Q,

    直线PQ过点(2,3),

    ∴m/2+3n=1,即m+6n-2=0,

    以(x,y)代(m,n)得x+6y-2=0,

    M在椭圆x^2/4+y^2=1外,

    ∴M的轨迹方程是x+6y-2=0(x^2/4+y^2>1).

    化简得x+6y-2=0(y3/5).

    (2)设M(2-6n,n),则l:(1-3n)x/2+ny=1,y=[1-(1-3n)x/2]/n,

    代入椭圆方程得x^2/4+[1-(1-3n)x/2]^2/n^2=1,

    n^2x^2+4-4(1-3n)x+(1-3n)^2x^2=4n^2,

    整理得(10n^2-6n+1)x^2-4(1-3n)x+4-4n^2=0,

    △=16(1-3n)^2-16(10n^2-6n+1)(1-n^2)

    =16(10n^4-6n^3-9n^2+6n-1

    +9n^2-6n+1)

    =16(10n^4-6n^3),

    |PQ|=√△/(10n^2-6n+1)*√{1+[(1-3n)/(2n)]^2}

    =√[(10n^2-6n)(13n^2-6n+1)]/(10n^2-6n+1),

    M到l的距离d1=|(1-3n)^2+n^2-1|/√{[(1-3n)/2]^2+n^2]

    =2(10n^2-6n)/√(13n^2-6n+1),

    O到l的距离d2=2/√(13n^2-6n+1),

    ∴S(POQM)=(1/2)|PQ|(d1+d2)=√[(10n^2-6n)=4,

    平方得5n^2-3n-8=0,

    解得n=-1或8/5,

    这时l的方程是2x-y-1=0,或19x-16y+10=0.